Platform for the Accelerated Realization, Analysis, & Discovery of Interface Materials

An NSF Materials Innovation Platform
News

Lena F. Kourkoutis wins NSF early-career award

Seven assistant professors win NSF early-career awards By Tom Fleischman | Cornell Chronicle Seven assistant professors, representing the colleges of Engineering and Agriculture and Life Sciences, have been recognized with National Science Foundation (NSF) Faculty...

Schlom elected to National Academy of Engineering

By Syl Kacapyr | Cornell Chronicle Darrell Schlom, the Herbert Fisk Johnson Professor of Industrial Chemistry in the Department of Materials Science and Engineering at Cornell, has been elected a member of the National Academy of Engineering (NAE). Election to the NAE...

PARADIM (Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials) is a new materials innovation platform led by Cornell University. It is an NSF mid-scale instrumentation program supported in the Division of Materials Research. PARADIM seeks to advance fundamental understanding of oxide-based hetero-interfaces with a range of two-dimensional (2D) material systems including oxides, chalcogenides and graphene through transformational research and mid-scale investments in instrumentation for bulk and thin film crystal growth and characterization. Fabricating interfaces and heterostructures between complex oxides and 2D materials allows for the creation of an atomically-precise “active substrate” that can itself have novel electronic and magnetic functionality, such as ferroelectricity, ferromagnetism, or superconductivity. Creating interface materials with designed properties opens up untold degrees of freedom that may result in transformational evolutions in next generation electronics. PARADIM is a partnership between Cornell, Clark Atlanta University, Johns Hopkins University, and Princeton University. This platform marks the beginning of a new PARADIM in materials discovery.
Examples of new interface materials that can be created by users of the Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM).  An image of cylindrical single crystals of strontium holmium oxide and titanium oxides.  The crystals are several millimeters in diameter and several centimeters long.  In the background is a high-resolution scanning transmission electron micrograph of an artificial material consisting of four monolayers of LaMnO3 followed by two monolayers of SrMnO3 (repeated many times), all grown on a SrTiO3 single crystal.  Electron energy-loss spectroscopy edges were used to color the La atoms as green, Mn atoms red, and Ti atoms blue.
Upcoming Events
cau94             johns65             princeton75
Support for PARADIM is provided under DMR-1539918 as part of the Materials Innovation Platform program.