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THE	PLAN	

 
o  Practical data curation: Concrete examples in 2D 

o  Why collect and curate data? 
o  A machine learning example with experimentally 

measured data 
o  How to know when to believe machine learning 
o  How much data does one need? 
 



• Data mining of public databases 
leads to the discovery of: 

•  1173 2D layered materials 
•  325 materials with piezoelectric 

monolayers 
•  98 bulk vertical lattice-

commensurate heterostructures 
•  487 1D molecular wires 
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SnGeS3 

La(AlBr4)3 

G.Cheon et al., Data mining for new two- and one-dimensional weakly bonded 
solids and lattice-commensurate heterostructures, Nano Letters (2017)  

We discover new 2D and 1D materials 



We compile a genome of 1173 2D materials 
•  Diverse spectrum of layered materials 
•  Materials Project IDs of all layered materials available 

in Supporting Information 
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MnP4 

V4S9Br4 

Cd(IO3)2 

G.Cheon et al., Nano Letters (2017) 



•  1173 weakly bonded layered materials identified, lots of new candidates! 
•  23 families of similar chemical compositions (>5 materials ), but >80% don’t 

belong to a family 

We compile a genome of 1173 2D materials 
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Families of 2D Materials 
Ac: actinides 
As: large 
pnictogens (As, 
Sb, Bi) 
F: halogens 
S: chalcogens 
excluding O 
La: lanthanides 
T: transition 
metals 
 

TS2: TMDs,  
MoS2, WSe2, 
… 

11 
G.Cheon et al., Nano Letters (2017) 



We find a wide spectrum of 2D material 
band gaps 
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Band/Gap/Distribution/(2D/Materials)
(Semi-local DFT 
band gaps for 
bulk materials 

from the 
Materials Project 

database) 161  
between 2~3 

eV 

26   
above 5 eV 

G.Cheon et al., Nano Letters (2017) 



We discover 487 1D materials 

•  Our algorithm can find 1D dimensional subunits 
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BPS4, a material found 
in this work Chain-like structure of t-Se that 

grow into nanowires.  
Xia et al., Adv. Materials (2003) 

Quasi-1D TaSe3 low-noise 
nanowire devices 

Liu et al., Nano Lett. (2017) 

•  Some inorganic ‘molecular wires’ have been predicted to possess 
structural stability and versatile material properties, but only ~20 known 

G.Cheon et al., Nano Letters (2017) 
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We find a wide spectrum of 1D material 
band gaps 
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(Semi-local DFT 
band gaps for 
bulk materials 

from the 
Materials Project 

database) 

107  
between 2~3 

eV 

10   
above 5 eV 

G.Cheon et al., Nano Letters (2017) 



We discover lattice-commensurate vertical 
heterostructures 

•  We discover intrinsic, lattice-commensurate 
heterostructures that preclude the need for artificial stacking: 
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MoS2 

YCu2Bi2(SeO2)2 

Identical 
clusters 

Different 
clusters 

AgPbBrO 
Heterostructures:  

different  
chemical compositions  

or  
number of atoms  

in each layer 

Not a heterostructure 

G.Cheon et al., Nano Letters (2017) 



We discover lattice-commensurate 
heterostructures 

•  We identify 98 lattice-commensurate heterostructures: 
•  Experimentally reported in bulk crystals 
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HgSb4S8(Livingstonite) Cd4Te6Cl6O13 Te3W2Se4(Cl4O)2 

2D  2D+1D 1D 

1D, Cd2Cl6 

2D, Cd2(Te6O13) 

G.Cheon et al., Nano Letters (2017) 



SOME	PRACTICAL	CURATION	APPROACHES	

Lower effort: 
 
•   Supporting information of publications 
•   File on your webpage 
•   File on Materials Data Facility (NIST) 

  
 
More effort, but broader utility: 
 
•   Work with others to fold into existing databases: 

•  NSF 2DCC at Penn State (Vin Crespi, Richard 
Hennig, et al) 

•  Jarvis at NIST (Francesca Tavazza, et al) 
•  Materialsweb.org (Richard Hennig) 
•  DOE’s Materials Project (Kristin Persson et al) 

 
  
  



MACHINE	LEARNING	HAS	THE	POTENTIAL	TO	FILL	A	GAP,	
ENABLING	SEARCHES	OF	LARGE	SPACES	OF	MATERIALS	



•  We	adopt	a	binary	classificaDon	
strategy	with	a	10-4	S/cm	
boundary,	moDvated	by	
engineering	requirements		

•  Training	set	includes	8	“good”	
conductors,	31	“bad”	conductors	

WE	COLLECT	39	EXPERIMENTAL	MEASUREMENTS	OF	LI	ION	
CONDUCTIVITY	FOR	SOLIDS	

A.	D.	Sendek,		E.	J.	Reed,	et	al,	Energy	and	Environmental	Science	(2017).	



WE	DRAW	ON	WISDOM/PROPOSALS	IN	THE	LITERATURE	FOR	
READILY	COMPUTABLE	FEATURES	(NO	DFT!)	

No	single	feature	has	strong	
correlaDon	with	ionic	

conducDvity	across	the	broad	
spectrum	of	39	materials	

A.	D.	Sendek,		E.	J.	Reed,	et	al,	Energy	and	Environmental	Science	(2017).	



WE	DRAW	ON	WISDOM/PROPOSALS	IN	THE	LITERATURE	FOR	
READILY	COMPUTABLE	FEATURES	(NO	DFT!)	

A	physics-based	model	for	a	single	
crystal,	with	implicit	assumpDons:		

A.	D.	Sendek,		E.	J.	Reed,	et	al,	Energy	and	Environmental	Science	(2017).	



WE	DRAW	ON	WISDOM/PROPOSALS	IN	THE	LITERATURE	FOR	
READILY	COMPUTABLE	FEATURES	(NO	DFT!)	

A.	D.	Sendek,		E.	J.	Reed,	et	al,	Energy	and	Environmental	Science	(2017).	



Assuming	a	logisDc	form,	we	search	for	the	maximally	
predicDve	set	of	features	

?	

WE	EMPLOY	LOGISTIC	REGRESSION	(TWO-CLASS		CLASSIFIER)	

A.	D.	Sendek,		E.	J.	Reed,	et	al,	Energy	and	Environmental	Science	(2017).	
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•  We search over all possible combinations of 20 features (>106 models) 
•  Optimal leave-one-out cross-validated misclassification rate = 10% 
•  Optimal model performance against random guessing: 3-4x improvement  

WE	EMPLOY	LEAVE-ONE	OUT	CROSS	VALIDATION	TO	
DETERMINE	OPTIMAL	FEATURES	

A.	D.	Sendek,		E.	J.	Reed,	et	al,	Energy	and	Environmental	Science	(2017).	



WE	DISCOVER	5	FEATURES	THAT	BEST	CLASSIFY	ION	
CONDUCTORS	

A.	D.	Sendek,		E.	J.	Reed,	et	al,	Energy	and	Environmental	Science	(2017).	



Ionic	conducDvity	is	not	all	that	magers!	We	also	screen	for:	
	

•  High	stability	against	oxidaDon	
•  High	stability	against	reducDon	
•  Low	electronic	conducDvity	
•  High	phase	stability	
•  Low	cost	
•  High	earth	abundance	

Gibbs	free	energy	of	atomizaDon	
Presence	of	transiDon	metals	

Band	gap	
Convex	hull	

Cost	of	raw	elements	involved	
Abundance	of	elements	in	Earth’s	crust	

All	Li-containing	materials:	>12,000	
Phase	stable:	

1,472	

All requirements met except ionic conductivity: 317 

All requirements: 21 

Ionic conductivity alone: 1,408 

WE	PERFORM	THE	FIRST	HOLISTIC	STRUCTURE	SCREENING	
OF	ALL	>12,000	LI-CONTAINING	SOLIDS	IN	THE	MATERIALS	

PROJECT	DATABASE	

A.	D.	Sendek,		E.	J.	Reed,	et	al,	Energy	and	Environmental	Science	(2017).	



WE	PROPOSE	21	NEW	PROMISING	SOLID	ELECTROLYTE	
CANDIDATES	BY	SCREENING	>12,000	

A.	D.	Sendek,		E.	J.	Reed,	et	al,	Energy	and	Environmental	Science	(2017).	



How well does the model do?



Random success  
rate: 14% 

(melting cases  
excluded) 

Model success  
rate: 39% 

(melting cases 
excluded) 

We discover ten new solids that are superionic 
conductors, doubling known superionic conductors 

Learning from only 40 data points = 3x improvement over 
guesswork 

AD	Sendek,	ED	Cubuk,	G	Cheon,	ER	Antoniuk,	Y	Cui,	E.	J.	Reed,	Chemistry	of	Materials	(2018).	



TWO	METRICS	FOR	MODEL	PERFORMANCE	

 
o  How much better than random guessing is our 

model?   
o  Approximately three times better 
o  Quantifies the state of humanity’s knowledge 

o  Are the false positives acceptable in number? 
o  61% are false positives 
o  Need to synthesize two materials to get one that 

works 
o  This is probably good enough in practice, but 

could be better 



Scientists aren’t truly guessing at random –  
but can they beat the machine? 



Our algorithm outperforms humans in accuracy  
and speed 

Ph.D.	students	

LogisDc	regression		
trained	on	40	examples	

Physics-based	models	Ra
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AD	Sendek,	ED	Cubuk,	G	Cheon,	ER	Antoniuk,	Y	Cui,	E.	J.	Reed,	Chemistry	of	Materials	(2018).	
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