

How data curation has potential to help you do science

Austin Sendek, E. Dogus Cubuk, Gowoon Cheon, Qian Yang, Yi Cui, Evan Reed^{*} *Department of Materials Science and Engineering Stanford University

THE PLAN

- Practical data curation: Concrete examples in 2D
- Why collect and curate data?
 - A machine learning example with experimentally measured data
 - How to know when to believe machine learning
 - o How much data does one need?

We discover new 2D and 1D materials

• Data mining of public databases leads to the discovery of:

- 1173 2D layered materials
- 325 materials with piezoelectric monolayers
- 98 bulk vertical latticecommensurate heterostructures
- 487 1D molecular wires

G.Cheon et al., Data mining for new two- and one-dimensional weakly bonded solids and lattice-commensurate heterostructures, *Nano Letters* (2017)

SnGeS₃

We compile a genome of 1173 2D materials

- Diverse spectrum of layered materials
- Materials Project IDs of all layered materials available in Supporting Information

 $V_4S_9Br_4$

Stanford University ¹⁰

We compile a genome of 1173 2D materials

- 1173 weakly bonded layered materials identified, lots of new candidates!
- 23 families of similar chemical compositions (>5 materials), but >80% don't belong to a family

Families of 2D Materials

We find a wide spectrum of 2D material band gaps

Band Gap Distribution (2D Materials)

G.Cheon et al., Nano Letters (2017)

We discover 487 1D materials

• Our algorithm can find 1D dimensional subunits

BPS₄, a material found in this work

Chain-like structure of t-Se that grow into nanowires. Xia et al., *Adv. Materials* (2003)

Quasi-1D TaSe3 low-noise nanowire devices Liu et al., *Nano Lett.* (2017)

 Some inorganic 'molecular wires' have been predicted to possess structural stability and versatile material properties, but only ~20 known

We find a wide spectrum of 1D material band gaps

Band Gap Distribution (1D Materials)

Stanford University ¹⁶

We discover lattice-commensurate vertical heterostructures

• We discover intrinsic, lattice-commensurate heterostructures that preclude the need for artificial stacking:

G.Cheon et al., Nano Letters (2017)

We discover lattice-commensurate heterostructures

- We identify 98 lattice-commensurate heterostructures:
- Experimentally reported in bulk crystals

G.Cheon et al., Nano Letters (2017)

Stanford University ¹⁹

A CONTRACTOR OF CONTRACTOR OF

SOME PRACTICAL CURATION APPROACHES

Lower effort:

- Supporting information of publications
- File on your webpage
- File on Materials Data Facility (NIST)

More effort, but broader utility:

- Work with others to fold into existing databases:
 - NSF 2DCC at Penn State (Vin Crespi, Richard Hennig, et al)
 - Jarvis at NIST (Francesca Tavazza, et al)
 - Materialsweb.org (Richard Hennig)
 - DOE's Materials Project (Kristin Persson et al)

MACHINE LEARNING HAS THE POTENTIAL TO FILL A GAP, ENABLING SEARCHES OF LARGE SPACES OF MATERIALS

WE COLLECT 39 EXPERIMENTAL MEASUREMENTS OF LI ION CONDUCTIVITY FOR SOLIDS

	RT bulk ionic
Composition	conductivity (S cm^{-1})
LiLa(TiO ₃) ₂	1×10^{-3}
$Li_{9,81}Sn_{0,81}P_{2,19}S_{12}$	5.5×10^{-3}
$Li_{10}Ge(PS_6)_2$	1.4×10^{-2}
Li _{10,35} Si _{1,35} P _{1,65} S ₁₂	6.5×10^{-3}
$Li_{14}ZnGe_4O_{16}(2)$	1.0×10^{-6}
Li ₂ Ca(NH) ₂	6.4×10^{-6}
$Li_2Ge_7O_{15}$	$5.0 imes 10^{-6}$
Li ₂ NH	$2.5 imes 10^{-4}$
Li ₂ S	1.0×10^{-13}
Li _{13.6} Si _{2.8} S _{1.2} O ₁₆	6.0×10^{-7}
$Li_{14}Ge_2V_2O_{16}$	$7.0 imes 10^{-5}$
$Li_{15}Ge_3V_2O_4$	6.03×10^{-6}
Li _{14.8} Ge _{3.4} W _{0.6} O ₄	$4.0 imes 10^{-5}$
$Li_3Fe_2P_3O_{12}$	1.0×10^{-7}
Li ₃ N	$5.75 imes 10^{-4}$
Li ₃ P	1.0×10^{-3}
γ -Li ₃ PS ₄	3.0×10^{-7}
$Li_3Sc_2P_3O_{12}$	1.0×10^{-10}
β_{II} -Li ₃ VO ₄	4.4×10^{-8}
$Li_4B_7O_{12}Cl$	1.0×10^{-7}
$Li_4BN_3H_{10}$	2.0×10^{-4}
γ -Li ₄ GeO ₄	3.1×10^{-12}
Li ₄ SiO ₄	2.4×10^{-10}
$Li_5La_3Bi_2O_{12}$	2.0×10^{-5}
$Li_5La_3Nb_2O_{12}$	8.0×10^{-6}
$Li_5La_3Ta_2O_{12}$	1.5×10^{-5}
Li_5NI_2	1.5×10^{-7}
Li ₆ BaLa ₂ Ta ₂ O ₁₂	4.0×10^{-5}
Li ₆ FeCl ₈	1.0×10^{-4}
Li ₆ NBr ₃	1.5×10^{-7}
Li ₆ SrLa ₂ Ta ₂ O ₁₂	7.0×10^{-6}
$Li_7La_3Zr_2O_{12}$	3.5×10^{-4}
$Li_7P_3S_{11}$	4.1×10^{-3}
$LiAlH_4$	2.0×10^{-9}
LiAlSiO ₄	1.4×10^{-5}
LiBH ₄	2.0×10^{-8}
LiI	1.0×10^{-6}
LiNH ₂	4.0×10^{-10}
α' -LiZr ₂ P ₃ O ₁₂	5.0×10^{-6}

- We adopt a binary classification strategy with a 10⁻⁴ S/cm boundary, motivated by engineering requirements
- Training set includes 8 "good" conductors, 31 "bad" conductors

WE DRAW ON WISDOM/PROPOSALS IN THE LITERATURE FOR READILY COMPUTABLE FEATURES (NO DFT!)

	Feature	Pearson correlation coefficient		
1	Volume per atom ^{<i>a</i>}	0.20		
2	Standard deviation in Li neighbour count	0.22		
3	Standard deviation in Li bond ionicity	-0.04		
4	Li bond ionicity ^a	-0.18	N	
5	Li neighbour count ^a	-0.19		
6	Li–Li bonds per Li ^a	0.06		
7	Bond ionicity of sublattice ^a	-0.28	CO	
8	Sublattice neighbour count ^a	-0.13		
9	Anion framework coordination ^a	-0.06		
10	Minimum anion-anion separation distance ^{a} (Å)	0.09		
11	Volume per anion (Å ³)	-0.01		
12	Minimum Li–anion separation distance ^a (Å)	0.20		
13	Minimum Li–Li separation distance ^a (Å)	-0.10		
14	Electronegativity of sublattice ^a	-0.16		
15	Packing fraction of full crystal	0.16		
16	Packing fraction of sublattice	0.19		
17	Straight-line path width ^a (Å)	0.07		
18	Straight-line path electronegativity ^a	-0.29		
19	Ratio of features (4) and (7)	-0.03		
20	Ratio of features (5) and (8)	-0.18		
	Constant term	—		

No single feature has strong correlation with ionic conductivity across the broad spectrum of 39 materials

WE DRAW ON WISDOM/PROPOSALS IN THE LITERATURE FOR READILY COMPUTABLE FEATURES (NO DFT!)

Feature

- 1 Volume per atom^{*a*}
- 2 Standard deviation in Li neighbour count
- 3 Standard deviation in Li bond ionicity
- 4 Li bond ionicity^{*a*}
- 5 Li neighbour count^a
- 6 Li–Li bonds per Li^a
- 7 Bond ionicity of sublattice^a
- 8 Sublattice neighbour count^a
- 9 Anion framework coordination^a
- 10 Minimum anion–anion separation distance^a (Å)
- 11 Volume per anion $(Å^3)$
- 12 Minimum Li–anion separation distance^a (Å)
- 13 Minimum Li–Li separation distance^a (Å)
- 14 Electronegativity of sublattice^{*a*}
- 15 Packing fraction of full crystal
- 16 Packing fraction of sublattice
- 17 Straight-line path width^a (Å)
- 18 Straight-line path electronegativity^a
- 19 Ratio of features (4) and (7)
- 20 Ratio of features (5) and (8) Constant term

A physics-based model for a single crystal, with implicit assumptions:

$$\sigma(T) = \frac{Dnq^2}{k_B T} = \frac{\left(fa^2 \nu_0 p_{occ} zj\right)nq^2}{k_B T} e^{-E_a/k_B T}$$

WE DRAW ON WISDOM/PROPOSALS IN THE LITERATURE FOR READILY COMPUTABLE FEATURES (NO DFT!)

Feature

WE EMPLOY LOGISTIC REGRESSION (TWO-CLASS CLASSIFIER)

Assuming a logistic form, we search for the maximally predictive set of features

$$P_{\text{superionic}}(\boldsymbol{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^{\mathrm{T}}\boldsymbol{x})}$$

$$\theta^{\mathrm{T}}x = ?$$

WE EMPLOY LEAVE-ONE OUT CROSS VALIDATION TO DETERMINE OPTIMAL FEATURES

- We search over all possible combinations of 20 features (>10⁶ models)
- Optimal leave-one-out cross-validated misclassification rate = 10%
- Optimal model performance against random guessing: 3-4x improvement

WE DISCOVER 5 FEATURES THAT BEST CLASSIFY ION CONDUCTORS

Feature

1 2 3 4	Volume per atom ^a Standard deviation in Li neighbour count Standard deviation in Li bond ionicity
5	Li neighbour count"
6	Li–Li bonds per Li ^a
7	Bond ionicity of sublattice ^a Dna^2 $(fa^2 v_0 p_{aaa} zj) na^2 - E/k T$
8	Sublattice neighbour count ^a $\sigma(T) = \frac{D\pi q}{dt} = \frac{(5 - 0^{10} \partial c c^{10})^{11}}{(5 - 0^{10} \partial c c^{10})^{11}} = \frac{1}{a^{10}} a^{10} B^{10}$
9	Anion framework coordination ^a
10	Minimum anion-anion separation distance ^{α} (A)
11	Volume per anion (Å ³)
12	Minimum Li-anion separation distance ^a (A)
13	Minimum Li–Li separation distance ^a (Å)
14	Electronegativity of sublattice ^a
15	Packing fraction of full crystal
16	Packing fraction of sublattice
17	Straight-line path width ^{a} (Å)
18	Straight-line path electronegativity ^a
19	Ratio of features (4) and (7)
20	Ratio of features (5) and (8)
	Constant term

WE PERFORM THE FIRST HOLISTIC STRUCTURE SCREENING OF ALL >12,000 LI-CONTAINING SOLIDS IN THE MATERIALS PROJECT DATABASE

Ionic conductivity is not all that matters! We also screen for:

WE PROPOSE 21 NEW PROMISING SOLID ELECTROLYTE CANDIDATES BY SCREENING >12,000

MPID	Chemical formula	$P_{\rm LR}$	d	3	A	$E_{ m gap}$	\tilde{V}_{ox}	USD/m ² (10 μ m thick)	I _A	Related study
mp-554076	BaLiBS ₃	0.589	1.049	0.048	1	2.153	9.697	23	38	
mp-532413	$Li_5B_7S_{13}$	0.897	1.228	0.024	1	3.553	5.454	42	38	95
mp-569782 ^a	Sr ₂ LiCBr ₃ N ₂	1.000	6.852	0.000	0	3.973	13.968	16	45	
mp-558219	$SrLi(BS_2)_3$	0.518	1.556	0.114	1	2.91	13.964	38	38	
mp-15797	LiErSe ₂	0.543	1.505	0.056	1	1.615	6.778	170	67	
mp-29410	$Li_2B_2S_5$	0.994	1.855	0.003	1	2.538	4.895	29	38	95
mp-676361	Li ₃ ErCl ₆	0.655	0.974	0.042	1	5.211	7.794	70	44	96 and 97
mp-643069 ^a	Li ₂ HIO	0.652	2.081	0.079	0	4.319	4.054	2.40	60	
mp-19896	Li ₂ GePbS ₄	0.604	1.063	0.090	1	2.265	4.591	13	54	90
mp-7744 ^a	LiSO ₃ F	1.000	4.097	0.000	0	5.792	13.446	10	34	
mp-22905 ^b	LiCl	0.837	1.381	0.031	1	6.25	4.214	0.94	34	98
mp-34477	LiSmS ₂	0.89	1.33	0.028	1	1.921	8.536	6.50	40	
mp-676109	Li ₃ InCl ₆	0.656	1.013	0.058	1	3.373	6.215	5.50	63	96 and 97
mp-559238	CsLi ₂ BS ₃	0.812	1.642	0.055	1	3.094	4.798	160	49	
mp-866665 ^a	$LiMgB_3(H_9N)_2$	1.000	5.149	0.000	0	6.511	11.222	30	38	
mp-8751	RbLiS	0.775	1.279	0.051	1	2.745	4.22	240	34	
mp-15789	$LiDyS_2$	0.901	1.339	0.025	1	1.935	8.736	9.20	39	
mp-15790	LiHoS ₂	0.899	1.327	0.025	1	1.965	8.749	300	55	
mp-15791	LiErS ₂	0.899	1.319	0.025	1	2.008	8.761	190	44	
mp-561095 ^a	$LiHo_3Ge_2(O_4F)_2$	0.984	3.247	0.009	0	4.163	53.18	370	55	
mp-8430	KLiS	0.76	1.243	0.052	1	3.057	4.348	14	34	

How well does the model do?

We discover ten new solids that are superionic conductors, doubling known superionic conductors

Computationally observed Li diffusivity (Å²/ps)

Learning from only 40 data points = 3x improvement over guesswork

AD Sendek, ED Cubuk, G Cheon, ER Antoniuk, Y Cui, E. J. Reed, Chemistry of Materials (2018).

TWO METRICS FOR MODEL PERFORMANCE

- How much better than random guessing is our model?
 - Approximately three times better
 - Quantifies the state of humanity's knowledge
- Are the false positives acceptable in number?
 - 61% are false positives
 - Need to synthesize two materials to get one that works
 - This is probably good enough in practice, but could be better

Scientists aren't truly guessing at random – but can they beat the machine?

Our algorithm outperforms humans in accuracy and speed scale (log 2 Random guessing baseline second 0 -2 Predictions per -4 -6 -8 0.2 0.6 0.8 0.4 0 F1 score

AD Sendek, ED Cubuk, G Cheon, ER Antoniuk, Y Cui, E. J. Reed, Chemistry of Materials (2018).

AD Sendek, ED Cubuk, G Cheon, ER Antoniuk, Y Cui, E. J. Reed, Chemistry of Materials (2018).

ACKNOWLEDGEMENTS

Austin Sendek (now CEO AIONICS)

Ekin Dogus Cubuk (now at Google Brain)

Qian Yang (now at U Conn)

Gowoon Cheon

STANFORD UNIVERSITY

This work is supported by:

- Stanford TomKat Center for Sustainable Energy Seed grant
- Stanford Graduate Fellowship program

Acknowledgements

This work is supported by:

- Army High Performance Computing Research Center(AHPCRC)
- Army Research Office W911NF-15-1-0570
- NSF EECS-1436626 and DMR-1455050
- Office of Naval Research N00014-15-1-2697

G.Cheon et al., Nano Letters, 2017 Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures

Gowoon Cheon

Also:

- Austin Sendek
- Karel-Alexander Duerloo
- Chase Porter
- Yuan Chen

