Data Analytics for Discovery and Design of 2D Materials

Richard G. Hennig, University of Florida

Search 6 2 9 4 at erials Materials structure and micro tructure Input from experment req Need for new me nods fo lacksquarenon-equilibrium ocessing

Role 6 P Soll fort dinition size tality seduction ulletfor solid/liquid interfaces

Powered by **MPInterfaces & materialsweb**

GASP - Genetic algorithm and machine learning for structure predictions

MPInterfaces - High throughput framework for 2D materials

Data available at http://materialsweb.org

materialsweb.org materialsweb Iome About Docs Contact VASP Workflow Builder Structure Characterization 2D Materials Bulk Materials 10891 Entries 00685 Entries **NSF 2D Data Framework** Open source available at <u>https://github.com/henniggroup</u>

Acknowledgment

- GASP genetic algorithm and machine learning: B. Revard, W. Tipton, A. Yesupenko, S. Honrao, S. Xie, A. M. Tan, B. Antonio
- Financial support by NSF, DOE, NIST
- Computational resources: HiPerGator@UF, NSF XSEDE, and Google Cloud Platform

• MPInterfaces and novel 2D materials: K. Mathew, A. Singh, M. Ashton, J. Paul, D. Gluhovic, H. Zhuang, J. Gabriel, M. Blonsky, M. Johannes, R. Ramanathan, R. Duan, Z. Ziyu, F. Tavazza, S. Sinnott, D. Stewart

Data Analytics and Materials Informatics

Data Analytics

 <u>Discovery</u>, <u>interpretation</u>, and <u>communication</u> of meaningful patterns in data and applying those patterns towards effective decision making

Materials Informatics

 Applies the principles of informatics to materials science and engineering to better understand the use, selection, development, and discovery of materials

Source: Wikipedia.org

Goal: Generate relevant data for materials discovery and design.

Types of data

- Computational and experimental structures, properties, processing
- Detailed meta data to enable retrieval and machine-learning of patterns

Data analytics needs

- Identify promising candidate materials
- Enable close comparison between ab-initio theory and measurements

Part I: Hierarchy of Materials Structures

Powered by MPInterfaces & materialsweb

rhennig@ufl.edu http://hennig.mse.ufl.edu

Materials Hierarchy - Structure Classification

- Complication due to partial occupancy of lattice sites

Structures lacking periodicity require new computational methods.

Materials Hierarchy - Defects by Dimensionality

OD - Point defects present in thermodynamic equilibrium

Vacancy

Frenkel-pair

Substitutional smaller atom

3D - Volume defects Precipitates, voids, inclusions

High-throughput methods for 1D to 3D defects needed

1D - Line defects

present in thermodynamic equilibrium

Dislocations

Disclinations

2D - Area defects Stacking faults, twin, grain, and interface boundaries, surfaces

Materials Hierarchy - Microstructure

- Combination of crystal/amorphous structure, point defects, and microstructure
- Microstructure is processing dependent
- Modelling of processing requires dimensionality reductions → Onn We thus define microstructure as all the existing defects ⇒ Oppc
- Issue is objectiv
- Overcome by merging Physics and AI?
- Incorporate knowledge of possible phases and defects requires multiscale approaches
- Opportunity to develop and use defect databases

How to predict microstructures from phases, defects, and processing?

in a material, which are not in thermodynamic equilibrium (according to type, number, distribution, size, and shape). Peter Haasen, Physical Metallurgy

Part II: Materials Informatics for 2D Materials Structures

Powered by MPInterfaces & materialsweb

rhennig@ufl.edu http://hennig.mse.ufl.edu

Materials Informatics of 2D Materials

Powered by MPInterfaces & materialsweb

H. L. Zhuang and RGH, JOM 66, 366 (2014)

November 25, 2018 • Boston, MA

Structure and Stability of 2D Materials

- Classification of 2D materials
- Criteria for stability $\Delta E_f < 200 \text{ meV/atom}$
- Methods for 2D materials discovery
 - Datamining for exfoliation
 - Evolutionary algorithm searches
 - Chemical substitutions and etching
- Characterization of 2D materials
 - Pourbaix diagrams
 - Photocatalysis
 - ► 2D half-metals
 - Spin-orbit and 2D magnetism
 - Substrate control of phase stability

Powered by MPInterfaces & materialsweb

rhennig@ufl.edu http://hennig.mse.ufl.edu

Datamining to Discover 2D Materials

get structure type

layered = [] for s in structures: if get structure type(s) == "layered": layered.append(s)

Hennig et al., arXiv:1610.07673 (10/2016) Marzari *et al.*, arXiv:1611.05234 (11/2017) Reed, et al., Nano Lett. (2/2017)

Ashton, Paul, Sinnott & Hennig. Phys. Rev. Lett. 118, 106101 (2017) https://arxiv.org/abs/1610.07673 (2016)

Powered by MPInterfaces & materialsweb

Data Mining

- Reed: Layered materials database
- Marzari: Layered materials and exfoliated 2D materials database
- Hennig: Exfoliated 2D materials, <u>https://MaterialsWeb.org</u>

Chemical Substitutions

Thygesen: Substitution for known 2D materials structures, <u>https://c2db.fysik.dtu.dk</u>

Structure predictions:

• Hennig: Genetic algorithm prediction of 2D materials, <u>https://MaterialsWeb.org</u>

Need to develop a comprehensive 2D Materials Database (Crespi, Reed).

Online Database: <u>https://materialsweb.org</u>

Powered by MPInterfaces & materialsweb

Ashton, Paul, Sinnott & Hennig. *Phys. Rev. Lett.* 118, 106101 (2017)

Online Database: <u>https://materialsweb.org</u>

Need to add properties such as band offsets, excitons, magnetic order, ...

Unique crystal structures for each 2D material stoichiometry in the DB

Structural, electronic and thermodynamic

Structure Prototypes

Materials Elementary 2D

Binary A-B 2D Materials

Powered by MPInterfaces & materialsweb

Ashton, Paul, Sinnott & Hennig. Phys. Rev. Lett. 2017

Using Crystal Structure Templates

Unique AB crystal structures

API for 2D materials and prototype structures accelerates materials search

Genetic Algorithm and Machine Learning for 2D Materials

Enables search for low-low-dimensional materials with unknown structures

Part III: 2D Materials Data Framework for Dopants, Impurities, and Defects

Powered by MPInterfaces & materialsweb

rhennig@ufl.edu http://hennig.mse.ufl.edu

Charged Defect Database Interface

Defects in semiconductors and insulators

- Defects can carry charge (useful notation: Kröger-Vink)
- Change of charge state \Rightarrow Charge transition levels
- Important for optoelectronic devices, spectroscopy
- Calculation of charged defects in 3D materials is well established

$$E^{f}[X^{q}] = E_{\text{tot}}[X^{q}] - E_{\text{tot}}[\text{bulk}] - \sum_{i} n_{i}\mu_{i} + qE_{\text{F}} + E_{\text{corr}}$$

- Similar approach works for 2D materials, but requires with periodic boundary conditions Generalized dipole correction developed by Freysoldt and Neugebauer
- Theory can also provide optical absorption, band edge positions, etc.

Need for high-throughput framework for 2D defect database

Outline of Computational Workflow

Powered by MPInterfaces & materialsweb

Powered by MPInterfaces & materialsweb http://hennig.mse.ufl.edu

Most desirable 2d materials

- List of experimentally synthesizable materials: possible elements and combinations
- Application goals: optoelectronics, spintronics, quantum devices, etc. determines desired materials properties, e.g. band offsets, and defect properties
- Synthesis conditions: precursors, temperature profiles, partial pressures of components

Relevant impurities and dopants

- List of usable dopant species and relevant impurities
- Desired doping levels, p or n-type

Other microstructure defects

- Edges and grain boundaries
- Lateral and vertical hetero interfaces

Need for experimental input (2DCC, Crespi).

Part IV: 2D Materials Data Framework for Data Representation of Band Structures

Powered by MPInterfaces & materialsweb

rhennig@ufl.edu http://hennig.mse.ufl.edu

Band Structure Visualization Tool

testdata/MoS2/vasprun_dos.xml

input path to KPOINTS file from bands calculation

Input paths to vasprun.xml files from DOS

Chart options: zoom, pan, view data

Data Analytics for Discovery and Design of 2D Materials

Richard G. Hennig, University of Florida

Search for 2D Materials

- Materials structure and microstructure lacksquare
- Input from experiment required \bullet
- Need for new methods for lacksquarenon-equilibrium defects and processing
- Role of ML for dimensionality reduction

Powered by **MPInterfaces & materialsweb** **GASP** - Genetic algorithm and machine learning for structure predictions

MPInterfaces - High throughput framework for 2D materials

Data available at http://materialsweb.org

1 ● ● ● く > | □ materialsweb.org materialsweb ome About Docs Contact VASP Workflow Builder Structure Characterization 2D Materials Bulk Materials 10891 Entries 00685 Entries **NSF 2D Data Framework** Open source available at <u>https://github.com/henniggroup</u>

